On a Reverse Estimate for Hodge Decompositions of p-Laplacian Type Operators

نویسنده

  • Baisheng Yan
چکیده

Let _(x, !)r |!| p&2 ! be a p-Laplacian type operator and consider the Hodge decomposition _(x, Du)=D.+H, div H=0. A standard elliptic theory asserts that &D.&q (p&1) C &Du& p&1 q for all q>p&1. There has been considerable recent interest in the validity of the reverse estimate &Du& p&1 q C &D.&q (p&1) for q>p&1 in the regularity study of certain geometrical mappings. In this paper, we give a relatively new proof of a well-known theorem that this reverse estimate holds for all q sufficiently close to the natural power p and also prove that the estimate holds for all q p&1 for certain special weak solutions u. 2001 Academic Press

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A P ] 3 1 A ug 2 00 4 LIPSCHITZ DOMAINS , DOMAINS WITH CORNERS , AND THE HODGE LAPLACIAN 1

We define self-adjoint extensions of the Hodge Laplacian on Lipschitz domains in Riemannian manifolds, corresponding to either the absolute or the relative boundary condition, and examine regularity properties of these operators’ domains and form domains. We obtain results valid for general Lipschitz domains, and stronger results for a special class of “almost convex” domains, which apply to do...

متن کامل

Hodge Laplacians on graphs

This is an elementary introduction to the Hodge Laplacian on a graph, a higher-order generalization of the graph Laplacian. We will discuss basic properties including cohomology and Hodge theory. At the end we will also discuss the nonlinear Laplacian on a graph, a nonlinear generalization of the graph Laplacian as its name implies. These generalized Laplacians will be constructed out of coboun...

متن کامل

Sharp Differential Estimates of Li-Yau-Hamilton Type for Positive .p; p/-Forms on Kähler Manifolds

In this paper we study the heat equation (of Hodge Laplacian) deformation of .p; p/-forms on a Kähler manifold. After identifying the condition and establishing that the positivity of a .p; p/-form solution is preserved under such an invariant condition, we prove the sharp differential Harnack (in the sense of LiYau-Hamilton) estimates for the positive solutions of the Hodge Laplacian heat equa...

متن کامل

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

On a p-Laplacian system and a generalization of the Landesman-Lazer type condition

This article shows the existence of weak solutions of a resonance problem for nonuniformly p-Laplacian system in a bounded domain in $mathbb{R}^N$‎. ‎Our arguments are based on the minimum principle and rely on a generalization of the Landesman-Lazer type condition‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999